The Investigation and Analysis of  Line Junction Detection in Biomedical Images

Authors

  • Seyyed Ahmad Edalatpanah Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran. https://orcid.org/0000-0001-9349-5695
  • Natalja Osintsev Fraunhofer-Institut für Holzforschung Wilhelm-Klauditz Institut WKI, Bienroder Weg 54 E, Brunswick, Germany.
  • Hamiden Abd El-Wahed Khalifa Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt. https://orcid.org/0000-0002-8269-8822
  • Amanna Ghanbari Talouki Department of Technical and Engineering, Ayandegan Institute of Higher Education, Tonekabon, Mazandaran, Iran. https://orcid.org/0000-0001-5326-4075

DOI:

https://doi.org/10.48314/ceti.v1i3.36

Keywords:

Directional filter, Gabor filter, Gaussian filter, Line detection

Abstract

Line junction detection plays a vitaltask in the segmentation of biomedical images in various applications such as liver blood vessel detection, diabetic retinopathy, neuron reconstruction studies, etc. Previous line junction techniques hugely depend upon skeletonization and image segmentation. In this paper, we present line junction detection based on three kinds of filters such as Gaussian filter, directional filter, Gabor filter,and Histogram of Oriented Gradient (HOG) employed for the line junction score measurement, ridge forks and branches detection, ridge point detection and junction strength detection respectively. We have conducted extensive experimentation on the DRIVE retinal fundus image database. The proposed algorithm's performance is evaluated based on qualitative and quantitative analysis, and it is observed that the proposed technique outperforms traditional approaches. It results in an averageaccuracy, precision, recall and F1-score of 96.60%, 92.50%, 94.08 and 95.40% for line junction detection on DRIVE dataset.

References

Rosten, E., & Drummond, T. (2005). Fusing points and lines for high performance tracking. Proceedings of the IEEE international conference on computer vision (pp. 1508–1515). IEEE. https://doi.org/10.1109/ICCV.2005.104

Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (pp. 430–443). Springer. https://doi.org/10.1007/11744023_34

Smith, S. M., & Brady, J. M. (1997). SUSAN-A new approach to low level image processing. International journal of computer vision, 23(1), 45–78. https://doi.org/10.1023/A:1007963824710

Harris, C., & Stephens, M. (2013). A combined corner and edge detector. Alvey vision conference, 15(50), 23.1-23.6. https://doi.org/10.5244/c.2.23

Elias, R., & Laganière, R. (2012). JUDOCA: junction detection operator based on circumferential anchors. IEEE transactions on image processing, 21(4), 2109–2118. https://doi.org/10.1109/TIP.2011.2175738

Maire, M., Arbelaez, P., Fowlkes, C., & Malik, J. (2008). Using contours to detect and localize junctions in natural images. 2008 IEEE conference on computer vision and pattern recognition (pp. 1–8). IEEE. https://doi.org/10.1109/CVPR.2008.4587420

Xia, G. S., Delon, J., & Gousseau, Y. (2014). Accurate junction detection and characterization in natural images. International journal of computer vision, 106(1), 31–56. https://doi.org/10.1007/s11263-013-0640-1

Parida, L., Geiger, D., & Hummel, R. (1998). Junctions: detection, classification, and reconstruction. IEEE transactions on pattern analysis and machine intelligence, 20(7), 687–698. https://doi.org/10.1109/34.689300

Radojević, M., Smal, I., & Meijering, E. (2016). Fuzzy-logic based detection and characterization of junctions and terminations in fluorescence microscopy images of neurons. Neuroinformatics, 14(2), 201–219. https://doi.org/10.1007/s12021-015-9287-0

Srinidhi, C. L., Rath, P., & Sivaswamy, J. (2017). A vessel keypoint detector for junction classification. 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017) (pp. 882–885). IEEE. https://doi.org/10.1109/ISBI.2017.7950657

Uslu, F., & Bharath, A. A. (2018). A multi-task network to detect junctions in retinal vasculature. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 11071 LNCS, pp. 92–100). Springer. https://doi.org/10.1007/978-3-030-00934-2_11

Wang, G., Lopez-Molina, C., Vidal-Diez de Ulzurrun, G., & De Baets, B. (2019). Noise-robust line detection using normalized and adaptive second-order anisotropic Gaussian kernels. Signal processing, 160, 252–262. https://doi.org/10.1016/j.sigpro.2019.02.027

Bhangale, K. B., Jadhav, K. M., & Shirke, Y. R. (2018). Robust pose invariant face recognition using DCP and LBP. International journal of management, technology and engineering, 8(9), 1026–1034. B2n.ir/a49086

Basu, M. (2002). Gaussian-based edge-detection methods-a survey. IEEE transactions on systems, man, and cybernetics, part c (applications and reviews), 32(3), 252–260. https://doi.org/10.1109/TSMCC.2002.804448

Chutatape, O., Zheng, L., & Krishnan, S. M. (1998). Retinal blood vessel detection and tracking by matched gaussian and kalman filters. Proceedings of the 20th annual international conference of the ieee engineering in medicine and biology society. vol. 20 biomedical engineering towards the year 2000 and beyond (cat. no. 98ch36286) (Vol. 6, pp. 3144–3149). IEEE. https://doi.org/10.1109/IEMBS.1998.746160

Gang, L., Chutatape, O., & Krishnan, S. M. (2002). Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter. IEEE transactions on biomedical engineering, 49(2), 168–172. https://doi.org/10.1109/10.979356

Lu, Y. M., & Do, M. N. (2007). Multidimensional directional filter banks and surfacelets. IEEE transactions on image processing, 16(4), 918–931. https://doi.org/10.1109/TIP.2007.891785

Truc, P. T. H., Khan, M. A. U., Lee, Y. K., Lee, S., & Kim, T. S. (2009). Vessel enhancement filter using directional filter bank. Computer vision and image understanding, 113(1), 101–112. https://doi.org/10.1016/j.cviu.2008.07.009

Mehrotra, R., Namuduri, K. R., & Ranganathan, N. (1992). Gabor filter-based edge detection. Pattern recognition, 25(12), 1479–1494. https://doi.org/10.1016/0031-3203(92)90121-X

Liu, S., Niu, Z., Sun, G., & Chen, Z. (2014). Gabor filter-based edge detection: A note. Optik, 125(15), 4120–4123. https://doi.org/10.1016/j.ijleo.2014.01.102

Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., & Chen, H. (2010). A novel lane detection based on geometrical model and gabor filter. 2010 IEEE intelligent vehicles symposium (pp. 59–64). IEEE. https://doi.org/10.1109/IVS.2010.5548087

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (pp. 886–893). IEEE. https://doi.org/10.1109/CVPR.2005.177

Bhangale, K. B. (2014). Human body detection in static images using HOG & piecewise linear SVM. International journal of innovative research and development, 3(6), 179–184. B2n.ir/m48593

Kato, T., Relator, R., Ngouv, H., Hirohashi, Y., Takaki, O., Kakimoto, T., & Okada, K. (2015). Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image. BMC bioinformatics, 16(1), 1–16. https://doi.org/10.1186/s12859-015-0739-1

Bhangale, K. B., & Mohanaprasad, K. (2020). Content based image retrieval using collaborative color, texture and shape features. International journal of innovative technology and exploring engineering, 9(3), 1466–1469. B2n.ir/b49405

Jabshetti, G. C., Biradar, M. S., & Bhangale, K. (2016). Object detection using regionlet transform. 2016 international conference on computing, analytics and security trends (CAST) (pp. 600–604). IEEE. https://doi.org/10.1109/CAST.2016.7915038

Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. A., & Van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging, 23(4), 501–509. https://doi.org/10.1109/TMI.2004.825627

Su, R., Sun, C., Zhang, C., & Pham, T. D. (2014). A new method for linear feature and junction enhancement in 2D images based on morphological operation, oriented anisotropic Gaussian function and Hessian information. Pattern recognition, 47(10), 3193–3208. https://doi.org/10.1016/j.patcog.2014.04.024

Zhang, H., Yang, Y., & Shen, H. (2017). Line junction detection without prior-delineation of curvilinear structure in biomedical images. IEEE access, 6, 2016–2027. https://doi.org/10.1109/ACCESS.2017.2781280

Published

2024-08-25

How to Cite

The Investigation and Analysis of  Line Junction Detection in Biomedical Images. (2024). Computational Engineering and Technology Innovations, 1(3), 160-169. https://doi.org/10.48314/ceti.v1i3.36

Similar Articles

You may also start an advanced similarity search for this article.