AI-Powered Forensic Face Drawing: An Overview of the Research on Methodological, Theoretical, and Real-World Defects in Suspect Identification Systems

Authors

  • Kannan Nagarajan * Department of Artificial Intelligence and Data Science, Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, Anna University, Chennai. https://orcid.org/0009-0001-6829-6261
  • Jeeva Sakthivel Department of Artificial Intelligence and Data Science, Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, Anna University, Chennai.
  • Rosenpranav Kogilavani Satheeshkumar Department of Artificial Intelligence and Data Science, Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, Anna University, Chennai.
  • Mohan Raja Velusamy Department of Artificial Intelligence and Data Science, Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, Anna University, Chennai.
  • Kamalaveni Vanjigounder Department of Artificial Intelligence and Data Science, Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, Anna University, Chennai.

https://doi.org/10.48314/ceti.vi.54

Abstract

Artificial Intelligence (AI) has transformed forensic facial sketching, introducing advanced deep learning architectures for suspect identification in constrained-data environments. This literature survey systematically analyzes the state of the art in AI-driven forensic facial sketching, identifying critical gaps across methodological, theoretical, and practical dimensions. Methodologically, we highlight the lack of comparative studies across deep learning architectures (e.g., GANs, VAEs, diffusion models), the over-reliance on accuracy as the sole evaluation metric, and the insufficient investigation of algorithmic robustness to noise and distortions. Theoretically, we identify gaps in understanding how AI models interpret and reconstruct facial features from sparse witness descriptions, as well as in the limited research on inference mechanisms with incomplete data. Practically, we note deficiencies in real-world scenario testing, user-centric design for forensic practitioners, and system scalability for operational deployment. By synthesizing existing literature, this survey not only identifies these interconnected gaps but also proposes future research directions to develop more robust, efficient, and forensically applicable AI systems. Our analysis emphasizes the need for standardized benchmarks, comprehensive evaluation protocols, and interdisciplinary collaboration to advance the field.

Keywords:

Forensic facial sketching, Deep learning architectures, Generative adversarial networks, Suspect identification, Evaluation metrics

Author Biography

  • Jeeva Sakthivel, Department of Artificial Intelligence and Data Science, Sri Shakthi Institute of Engineering and Technology, Coimbatore-641062, Anna University, Chennai.

    STUDENT,

    DEPARTMENT OF ARTIFICIAL INTELLIGEMCE AND DATA SCIENCE,

References

  1. [1] Jain, A. K., & Li, S. Z. (2011). Handbook of face recognition (Vol. 1). Springer. https://doi.org/10.1007/978-0-85729-932-1

  2. [2] Frowd, C. D., Hancock, P. J. B., & Carson, D. (2004). Evofit: A holistic, evolutionary facial imaging technique for creating composites. ACM transactions on applied perception (tap), 1(1), 19–39. https://doi.org/10.1145/1008722.1008725

  3. [3] Dash, A., Gamboa, J. C. B., Ahmed, S., Liwicki, M., & Afzal, M. Z. (2017). Tac-gan-text conditioned auxiliary classifier generative adversarial network. ArXiv preprint arxiv:1703.06412. https://doi.org/10.48550/arXiv.1703.06412

  4. [4] Frowd, C., Bruce, V., McIntyre, A., & Hancock, P. (2007). The relative importance of external and internal features of facial composites. British journal of psychology, 98(1), 61–77. https://doi.org/10.1348/000712606X104481

  5. [5] Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1), 71–86. https://doi.org/10.1162/jocn.1991.3.1.71

  6. [6] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386

  7. [7] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural information processing systems, 33, 6840–6851. http://dx.doi.org/10.48550/arXiv.2006.11239

  8. [8] Mirsky, Y., & Lee, W. (2021). The creation and detection of deepfakes: A survey. ACM computing surveys (CSUR), 54(1), 1–41. https://doi.org/10.1145/3425780

  9. [9] Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. ArXiv preprint arxiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784

  10. [10] Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. ArXiv preprint arxiv:1710.10196. https://doi.org/10.48550/arXiv.1710.10196

  11. [11] Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2020). Analyzing and improving the image quality of stylegan. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8110-8119). http://dx.doi.org/10.1109/CVPR42600.2020.00813

  12. [12] Kingma, D. P., Welling, M., & others. (2019). An introduction to variational autoencoders. Foundations and trends®in machine learning, 12(4), 307–392. http://dx.doi.org/10.1561/2200000056

  13. [13] Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., … & Yang, M. H. (2023). Diffusion models: A comprehensive survey of methods and applications. ACM computing surveys, 56(4), 1–39. https://doi.org/10.1145/3626235

  14. [14] Zhang, Z., Song, Y., & Qi, H. (2017). Age progression/regression by conditional adversarial autoencoder. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5810–5818). IEEE. http://dx.doi.org/10.1109/CVPR.2017.463

  15. [15] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30. http://dx.doi.org/10.48550/arXiv.1703.05175

  16. [16] Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1–48. https://doi.org/10.1186/s40537-019-0197-0

  17. [17] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., … & He, Q. (2020). A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555

  18. [18] Odena, A., Olah, C., & Shlens, J. (2017). Conditional image synthesis with auxiliary classifier gans. International conference on machine learning (pp. 2642–2651). Proceedings of machine learning research (PMLR). https://doi.org/10.48550/arXiv.1610.09585

  19. [19] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. https://doi.org/10.48550/arXiv.1706.03762

  20. [20] Chen, Y. S., Wang, Y. C., Kao, M. H., & Chuang, Y. Y. (2018). Deep photo enhancer: Unpaired learning for image enhancement from photographs with gans. Proceedings of the ieee conference on computer vision and pattern recognition (pp. 6306–6314). IEEE. http://dx.doi.org/10.1109/CVPR.2018.00660

  21. [21] Ulery, B. T., Hicklin, R. A., Buscaglia, J., & Roberts, M. A. (2011). Accuracy and reliability of forensic latent fingerprint decisions. Proceedings of the national academy of sciences, 108(19), 7733–7738. https://doi.org/10.1073/pnas.1018707108

  22. [22] Frowd, C. D., Pitchford, M., Bruce, V., Jackson, S., Hepton, G., Greenall, M., … & Hancock, P. J. B. (2011). The psychology of face construction: giving evolution a helping hand. Applied cognitive psychology, 25(2), 195–203. https://doi.org/10.1002/acp.1662

  23. [23] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. ArXiv preprint arxiv:1412.6572. https://doi.org/10.48550/arXiv.1412.6572

  24. [24] Frowd, C., Bruce, V., & Hancock, P. J. B. (2009). Evolving facial composite systems. Forensic update. https://eprints.ncl.ac.uk/157049

  25. [25] Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4401–4410). IEEE. https://doi.org/10.1109/CVPR.2019.00453

  26. [26] Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. ArXiv preprint arxiv:1312.6114. https://doi.org/10.48550/arXiv.1312.6114

  27. [27] Solomon, C. J., Gibson, S. J., & Maylin, M. (2012). EFIT-V: Evolutionary algorithms and computer composites. Craniofacial identification, 24–41. https://B2n.ir/ze2863

  28. [28] Mnookin, J. L., Cole, S. A., Dror, I. E., & Fisher, B. A. J. (2010). The need for a research culture in the forensic sciences. UCLA law review., 58, 725. https://heinonline.org/HOL/LandingPage?handle

  29. [29] Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002

  30. [30] Phillips, P. J., Yates, A. N., Hu, Y., Hahn, C. A., Noyes, E., Jackson, K., … & others. (2018). Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms. Proceedings of the national academy of sciences, 115(24), 6171–6176. https://doi.org/10.1073/pnas.1721355115

  31. [31] Akhtar, N., & Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision: A survey. Ieee access, 6, 14410–14430. https://doi.org/10.1109/ACCESS.2018.2807385

  32. [32] Wells, G. L., & Olson, E. A. (2003). Eyewitness testimony. Annual review of psychology, 54(1), 277–295. https://doi.org/10.1146/annurev.psych.54.101601.145028

  33. [33] Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. ArXiv preprint arxiv:1903.12261. https://doi.org/10.48550/arXiv.1903.12261

  34. [34] Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K.-R. (2019). Explainable AI: interpreting, explaining and visualizing deep learning (Vol. 11700). Springer nature. https://B2n.ir/hz3930

  35. [35] Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L., Rezende, D., & Lerchner, A. (2018). Towards a definition of disentangled representations. ArXiv preprint arxiv:1812.02230. https://doi.org/10.48550/arXiv.1812.02230

  36. [36] Arora, S., & Zhang, Y. (2017). Do gans actually learn the distribution? an empirical study. ArXiv preprint arxiv:1706.08224. https://doi.org/10.48550/arXiv.1706.08224

  37. [37] Begoli, E., Bhattacharya, T., & Kusnezov, D. (2019). The need for uncertainty quantification in machine-assisted medical decision making. Nature machine intelligence, 1(1), 20–23. https://doi.org/10.1038/s42256-018-0004-1

  38. [38] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., … & others. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information fusion, 76, 243–297. https://doi.org/10.1016/j.inffus.2021.05.008

  39. [39] Blanz, V., & Vetter, T. (2023). A morphable model for the synthesis of 3D faces. Seminal graphics papers: pushing the boundaries (pp. 157–164). publication history. https://doi.org/10.1145/3596711.3596730

  40. [40] White, D., Phillips, P. J., Hahn, C. A., Hill, M., & O’Toole, A. J. (2015). Perceptual expertise in forensic facial image comparison. Proceedings of the royal society B: Biological sciences, 282(1814), 20151292. https://doi.org/10.1098/rspb.2015.1292

  41. [41] Newsham, G. R., Cetegen, D., Veitch, J. A., & Whitehead, L. (2010). Comparing lighting quality evaluations of real scenes with those from high dynamic range and conventional images. ACM transactions on applied perception (TAP), 7(2), 1–26. https://doi.org/10.1145/1670671.1670677

  42. [42] Cook, M., Marnerides, A., Johnson, C., & Pezaros, D. (2023). A survey on industrial control system digital forensics: Challenges, advances and future directions. IEEE communications surveys & tutorials, 25(3), 1705–1747. https://doi.org/10.1109/COMST.2023.3264680

  43. [43] He, S., Lei, Y., Zhang, Z., Sun, Y., Li, S., Zhang, C., & Ye, J. (2025). Identity deepfake threats to biometric authentication systems: Public and expert perspectives. ArXiv preprint arxiv:2506.06825. https://doi.org/10.48550/arXiv.2506.06825

  44. [44] Green, B., & Chen, Y. (2019). The principles and limits of algorithm-in-the-loop decision making. Proceedings of the acm on human-computer interaction, 3(CSCW), 1–24. https://doi.org/10.1145/3359152

  45. [45] AlMutawa, A., Ikuesan, R. A., & Said, H. (2024). Towards a comprehensive metaverse forensic framework based on technology task fit model. Future internet, 16(12), 437. https://doi.org/10.3390/fi16120437

  46. [46] Talib, M. A., Majzoub, S., Nasir, Q., & Jamal, D. (2021). A systematic literature review on hardware implementation of artificial intelligence algorithms. The journal of supercomputing, 77(2), 1897–1938. https://doi.org/10.1007/s11227-020-03325-8

  47. [47] Ndibe, O. S. (2025). AI-driven forensic systems for real-time anomaly detection and threat mitigation in cybersecurity infrastructures. International journal of research publication and reviews, 6(5), 389–411. https://doi.org/10.55248/gengpi.6.0525.1991

Published

2025-01-27

How to Cite

Nagarajan, K., Sakthivel, J., Satheeshkumar, R. K., Velusamy, M. R., & Vanjigounder, K. (2025). AI-Powered Forensic Face Drawing: An Overview of the Research on Methodological, Theoretical, and Real-World Defects in Suspect Identification Systems. Computational Engineering and Technology Innovations, 2(1), 11-22. https://doi.org/10.48314/ceti.vi.54