Edge Computing for Distributed IoT Data Management in Smart Cities
DOI:
https://doi.org/10.48314/ceti.vi.46Keywords:
Edge computing, Smart cities, Internet of Things , Fog computingAbstract
As urban areas expand and strive for sustainability, the integration of edge computing with IoT is becoming essential for creating smarter, more efficient city systems. IoT devices found in smart cities produce large volumes of data that necessitate swift processing for real-time applications such as energy management, transportation networks, and public safety initiatives. Edge computing fulfills this requirement by decentralizing the processing of data, positioning computation closer to the source of the data, which minimizes latency and reduces bandwidth consumption. This paper examines how edge computing can be utilized for distributed IoT data management, emphasizing its significance in improving the performance of urban infrastructure. Important topics covered include architectural frameworks, implementation strategies, and significant challenges like privacy, security, and scalability. By enhancing the efficiency and reliability of smart city applications, edge computing contributes to greater resilience by distributing processing capabilities throughout the network. Through the use of edge computing, cities can foster more adaptable, responsive, and secure environments, making the best use of resources while enhancing the living standards for their residents.
References
Jaber, M. M., Ali, M. H., Abd, S. K., Alkhayyat, A., Malik, R. Q., & others. (2023). Application of edge computing-based information-centric networking in smart cities. Computer communications, 211, 46–58. https://doi.org/10.1016/j.comcom.2023.09.003
Khang, A., Gupta, S. K., Rani, S., & Karras, D. A. (2023). Smart cities: IoT technologies, big data solutions, cloud platforms, and cybersecurity techniques. CRC Press.
Walczak, R., Koszewski, K., Olszewski, R., Ejsmont, K., & Kálmán, A. (2023). Acceptance of IoT edge-computing-based sensors in smart cities for universal design purposes. Energies, 16(3), 1024. https://doi.org/10.3390/en16031024
Singh, J., Singh, P., Hedabou, M., & Kumar, N. (2023). An efficient machine learning-based resource allocation scheme for SDN-enabled fog computing environment. IEEE transactions on vehicular technology, 72(6), 8004–8017. https://doi.org/10.1109/TVT.2023.3242585
Singh, J., Singh, P., Amhoud, E. M., & Hedabou, M. (2022). Energy-efficient and secure load balancing technique for SDN-enabled fog computing. Sustainability, 14(19), 12951. https://doi.org/10.3390/su141912951
Khanh, Q. V., Nguyen, V. H., Minh, Q. N., Van, A. D., Le Anh, N., & Chehri, A. (2023). An efficient edge computing management mechanism for sustainable smart cities. Sustainable computing: informatics and systems, 38, 100867. https://doi.org/10.1016/j.suscom.2023.100867
Syed, A. S., Sierra-Sosa, D., Kumar, A., & Elmaghraby, A. (2021). IoT in smart cities: A survey of technologies, practices and challenges. Smart cities, 4(2), 429–475. https://doi.org/10.3390/smartcities4020024
Qian, Y., Wu, D., Bao, W., & Lorenz, P. (2019). The internet of things for smart cities: Technologies and applications. IEEE network, 33(2), 4–5. https://doi.org/10.1109/MNET.2019.8675165
Khan, L. U., Yaqoob, I., Tran, N. H., Kazmi, S. M. A., Dang, T. N., & Hong, C. S. (2020). Edge-computing-enabled smart cities: A comprehensive survey. IEEE internet of things journal, 7(10), 10200–10232.
Ang, L.-M., Seng, K. P., Ijemaru, G. K., & Zungeru, A. M. (2018). Deployment of IoV for smart cities: Applications, architecture, and challenges. IEEE access, 7, 6473–6492. https://doi.org/10.1109/ACCESS.2018.2887076
Tang, B., Chen, Z., Hefferman, G., Wei, T., He, H., & Yang, Q. (2015). A hierarchical distributed fog computing architecture for big data analysis in smart cities. In Proceedings of the ase bigdata & socialinformatics 2015 (pp. 1–6). https://doi.org/10.1145/2818869.2818898
Sapienza, M., Guardo, E., Cavallo, M., La Torre, G., Leombruno, G., & Tomarchio, O. (2016). Solving critical events through mobile edge computing: an approach for smart cities [presentation]. 2016 ieee international conference on smart computing (smartcomp) (pp. 1–5). https://doi.org/10.1109/SMARTCOMP.2016.7501719
Pandey, C., Tiwari, V., Imoize, A. L., Li, C. T., Lee, C. C., & Roy, D. S. (2023). 5GT-GAN: Enhancing data augmentation for 5G-enabled mobile edge computing in smart cities. IEEE access, 11, 120983–120996. https://doi.org/10.1109/ACCESS.2023.3328170
Singh, J., Warraich, J., & Singh, P. (2021). A survey on load balancing techniques in fog computing [presentation]. 2021 international conference on computing sciences (iccs) (pp. 47–52). https://doi.org/10.1109/ICCS54944.2021.00018
Yang, J., Lee, T. Y., Lee, W. T., & Xu, L. (2022). A design and application of municipal service platform based on cloud-edge collaboration for smart cities. Sensors, 22(22), 8784. https://doi.org/10.3390/s22228784
Yaqoob, I., Salah, K., Jayaraman, R., & Omar, M. (2023). Metaverse applications in smart cities: Enabling technologies, opportunities, challenges, and future directions. Internet of things, 23, 100884. https://doi.org/10.1016/j.iot.2023.100884
Rosayyan, P., Paul, J., Subramaniam, S., & Ganesan, S. I. (2023). An optimal control strategy for emergency vehicle priority system in smart cities using edge computing and IOT sensors. Measurement: sensors, 26, 100697. https://doi.org/10.1016/j.measen.2023.100697
Mohapatra, H., & Rath, A. K. (2021). A fault tolerant routing scheme for advanced metering infrastructure: an approach towards smart grid. Cluster computing, 24(3), 2193–2211. https://doi.org/10.1007/s10586-021-03255-x
Mohapatra, H., & Rath, A. K. (2021). An IoT based efficient multi-objective real-time smart parking system. International journal of sensor networks, 37(4), 219–232. https://doi.org/10.1504/IJSNET.2021.119483