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1|Introduction    

Video analytics is an essential field within image analysis, focusing on processing and interpreting video data 

by overlaying it with numerous images captured over time. This area of study deals with various challenges, 

such as video classification, object identification, and exclusive video tasks like object tracking, trajectory 

prediction, and activity recognition. Object tracking, in particular, is concerned with following an object across 

multiple video frames, while trajectory prediction estimates the object's path and activity recognition classifies 

the actions occurring in the video sequence. These challenges have been significantly advanced by 
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Abstract 

Video surveillance systems play a crucial role in modern security, with real-time applications becoming increasingly 

important across various sectors. This paper proposes a novel method for detecting moving objects in real time using 

Convolutional Neural Networks (CNNs) combined with Gaussian Mixture Modeling (GMM) for background 

subtraction. The system processes video sequences, converting them into frames where moving objects are 

distinguished from the background. GMM is used to model the background, while CNNs extracts local optimal 

features to enhance object tracking accuracy. This method is particularly effective for applications such as operational 

robotics and military surveillance, which require real-time mobile detection systems. The proposed system was tested 

using custom video sequences, demonstrating significant improvements in object detection accuracy and reliability 

even in challenging conditions such as low-light environments. The results show improved performance in tracking 

moving objects, with the system successfully reducing noise and maintaining detection precision. 
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  Convolutional Neural Networks (CNNs), which have produced remarkable results in tasks similar to those 

in image analysis, extending their efficacy to video-based problems [1]. 

In the context of motion modeling, the Gaussian Mixture Modeling (GMM) approach has been widely 

utilized. This method allows for the calculation of motion descriptors throughout the tracking process. By 

converting video streams into individual frames, optical flow calculations can be applied to each extracted 

frame, making it easier to identify and track moving objects over time. This technique is foundational to video 

surveillance systems that aim to detect motion or objects in real time and has numerous practical applications 

in areas such as traffic management, healthcare, and public safety [2]. For instance, in locations like shopping 

malls and theaters, real-time video analytics provide enhanced security by monitoring crowds and detecting 

suspicious activities. 

One of the major benefits of real-time video surveillance in multi-object detection is its ability to continuously 

monitor environments without human intervention, allowing for automated threat detection and decision-

making. In medical contexts, video analytics improves patient care by monitoring their activities and alerting 

healthcare professionals to any potential emergencies. However, despite these advantages, real-time video 

surveillance faces several challenges [3]. High computational requirements, limitations in accurately detecting 

and tracking objects in cluttered or dynamic environments, and issues related to privacy and data security are 

some of the key drawbacks.  

To overcome these limitations, advanced methodologies that enhance the accuracy and efficiency of video 

surveillance systems are proposed. These may involve integrating deep learning models with traditional 

approaches like GMM or employing real-time optimization techniques that reduce the computational burden 

while maintaining high accuracy in object detection and tracking [4]. Furthermore, the incorporation of 

privacy-preserving algorithms can address concerns related to data security and personal privacy, ensuring 

that video surveillance systems are both effective and ethically sound in their deployment. 

By refining these techniques, future systems will not only provide more robust and reliable surveillance 

solutions but will also push the boundaries of how video analytics can be applied to a wide range of 

environments and use cases. These improvements will enhance safety, streamline operations in various 

sectors, and ensure that video surveillance continues to evolve to meet the needs of modern society. 

2|Literature Survey 

Detecting all objects of a specific type in an image is the aim of object detection, as the name suggests. 

Alternatively, there may be several classes where each object needs to be accurately classified. An image is fed 

into an object detector, and the result is a list of bounding boxes, complete with labels if there are multiple 

classes. The pixel coordinates of the top-left and bottom-right corners of the bounding box, as well as the 

width and height of the box, are commonly used to depict a bounding box. 

Most object detectors give each box a reliable value, indicating how reliable it is to detect. The average 

accuracy of all classes is a standard performance statistic for an object detector. As mentioned above, CNN 

methods of object detection are state-of-the-art, outperforming older methods, such as SVMs. 

Elhoseny et al. [5] developed Multi-Objection Detection And Tracking (MODT) with the Kalman filtering 

and increasing region. The proposed model moderately evaluated the movements of the object, where the 

estimates were based on the precise tracking accomplished between successive frames. However, in order to 

attain a better detection rate, the generated model demonstrated motion valuation techniques required to be 

incorporated into the MODT analysis. 

Kiaee et al. [6] developed a Grey-Level Co-Occurrence Matrix (GLCM) in Haar Wavelet Transformed Space, 

Support Vector Machine (SVM). The proposed model used the Haar wavelet transform since the generated 

wavelet sub-bands had a significant impact on the GLCM computation's orientation elements. However, the 

model that was developed introduced an optimizing procedure for each object, although the histogram color 

variation was modest. 
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Madhan and Shanmugapriya [7] proposed a method for detecting unusual events in video using instance-

based communication and CNNs. By first identifying moving objects with a Gaussian background model and 

applying image processing techniques, the relevant areas of these objects are captured. A suction function is 

then created and dispersed among systems to generate field packages based on the intended use. A multi-

instance learning model is used to make pixel-level predictions using the normalized Embark-Head technique. 

The study demonstrates that CNNs-based and sparse representation methods can accurately detect unusual 

video events at the pixel level. Experimental results confirm the effectiveness of these approaches, particularly 

in identifying anomalies like two-lane accidents, without relying on culturally specific definitions of abnormal 

activity. 

Ingle and Kim [8] introduced a lightweight, resource-efficient CNNs technique for subclass detection to 

identify, locate, and categorize various types of knives and firearms in real time. Utilizing a multiclass subclass 

detection CNNs, the system classifies object frames into subclasses, such as normal or pathological. The 

proposed method achieves impressive precision, with 97.50% on ImageNet and IMFDB datasets, 90.50% on 

Open-Image, 93% on Olmos, and 90.7% in multiview camera settings. This resource-constrained system also 

demonstrated an 85.5% precision for multiview camera detection, offering a robust solution for real-time 

weapon detection with high accuracy. 

Iqbal et al. [9] proposed a leverages deep learning models to detect anomalies in video streams from 

quadcopter surveillance. Faster R-CNN, based on ResNet-50, is used in the first feature extraction stage for 

rapid learning and feature reduction. The system evaluates five different CNN architectures for object 

detection in surveillance images, with Faster R-CNN achieving the highest performance. The method delivers 

an average precision of 79% across all categories, making it an effective solution for threat detection in real-

time video streams. 

Wahab et al. [10] proposed a deep learning approach, and the Single Shot Detector (SSD) algorithm focuses 

on developing and implementing a real-time object detection and recognition system. The primary goal was 

to create a highly accurate and efficient object detection system that leverages pre-trained models. Several 

models were tested on public datasets like Kitti, PASCAL VOC, and MS COCO to assess accuracy and speed. 

Throughout development, various deep learning structures were experimented with, resulting in a system that 

achieved 97% accuracy in real-time object detection and recognition. The system's performance was evaluated 

using metrics such as precision and recall.  

3|Problem Definition 

When we want to monitor many moving objects in a video, we call this multiple object tracking. In a certain 

view, the work is an expansion of object detection because we have to correlate detections between frames 

in order to provide constant tracking, with the exception of the detection of objects. Object detection remains 

an unresolved issue and its speed is limited to the most complex methods. 

4|Motivation 

As observed from the earlier study, they contain certain limitations, so we aim to minimize them through our 

work. We would like to research how multiple object tracking works in real-time with this study [11]. A multi-

object surveillance system is developed to permit comparison with other works assessed on existing data sets. 

As the purpose is to operate the monitor in real-time, the speed of the monitor is a crucial factor. 

5|Proposed System 

 The proposed system aims to enhance real-time multi-object detection and tracking through a combination 

of advanced image processing and deep learning techniques. This methodology builds upon the strengths of 

GMM for effective motion detection and CNNs for accurate object tracking [12]. By breaking down video 

sequences into frames, identifying motion, and tracking objects, the system offers a robust solution for real-



Multi-object detection for real-time video surveillance systems  

 

14

 

  time video surveillance across diverse environments. The combination of GMM and CNNs ensures high 

accuracy in object detection while maintaining computational efficiency, making it suitable for security, traffic 

management, and other applications requiring real-time monitoring in Fig. 1.  

 

Fig. 1. Proposed workflow model. 

5.1|Video Dataset  

The process begins by obtaining a video dataset, which can be real-time video feeds or pre-recorded video. 

This dataset serves as the input for the system [13]. The video data consists of various scenarios that need 

monitoring, such as traffic intersections, shopping malls, or medical environments. 

5.2|Input Video Sequences 

The video dataset is processed and split into input video sequences. This step converts the continuous video 

stream into discrete, manageable frames. These individual frames are essential for performing motion analysis, 

object detection, and tracking over time. The conversion to frames allows the system to treat the video as a 

series of static images that can be processed independently. 

5.3|Preprocessing Using Gaussian Mixture Modeling  

The task at hand involves preprocessing video sequences by breaking them into individual frames, modeling 

the background using GMM, and distinguishing moving objects from the static background [14]. Here's a 

detailed breakdown of how this process works. 

Breaking Video Sequences into Frames 

Video input is essentially a continuous stream of frames, with each frame acting as a still image captured at a 

specific time point. In preprocessing, the video sequence is translated into a series of frames. This is important 

for motion detection because movement can only be observed by analyzing changes between consecutive 

frames. 

after the video is split into frames, the system utilizes the first few frames as reference frames. These reference 

frames contain only the background (i.e., static objects like roads, buildings, and trees) without any moving 

objects, establishing a baseline for later comparison. 

Modeling the background with GMM 

The initial frames contain only background objects, meaning there are no moving elements like people or 

vehicles. By analyzing these background-only sequences, the system aims to model the scene's static 
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components. This allows the model to learn what the "normal" background looks like, even if minor 

fluctuations in lighting or environment exist. 

Each pixel in the frames is represented as a mixture of Gaussian distributions, which allows the system to 

account for small variations in the background, such as shadows or changing light intensity. Essentially, GMM 

learns the statistical properties of each pixel by fitting multiple Gaussian distributions to capture its range of 

values over time. 

Overcoming ambiguity in background 

One challenge in video processing is that background pixel values can fluctuate due to factors like lighting 

changes, shadows, or reflections. Without proper handling, these variations could be mistaken as moving 

objects. GMM addresses this by modeling each pixel's intensity with multiple Gaussian distributions [15]. If 

the pixel value varies slightly (for example, due to a shadow moving), the GMM identifies this as a background 

variation rather than a moving object. 

The GMM background model helps distinguish the foreground (moving objects) from the background. When 

an object enters the scene, its pixel values will differ significantly from the background model, which triggers 

the detection of movement. This ensures that only moving objects (like cars or people) are detected, while 

stationary parts of the environment are classified as background. 

    Foreground Detection 

The main use of GMM in preprocessing is to detect the foreground—the objects moving across the scene. 

Any pixel that doesn't conform to the background model (i.e., it cannot be explained by any of the background 

Gaussians) is flagged as part of a moving object. This step is critical for identifying objects like cars, humans, 

animals, etc. 

Pixel value changes and Gaussian approximation 

During the video sequence, pixel values are monitored. If the pixel value changes drastically compared to the 

established background model, it's classified as a moving object. For example, if a person enters the scene, 

the pixel values at their location will deviate from the background. 

GMM approximates these variations in pixel values using a Gaussian distribution. Each pixel is modeled as a 

combination of Gaussians, representing possible background variations at that point. If the pixel matches the 

background model (i.e., fits one of the Gaussians), it remains classified as background. If not, it is classified 

as part of a moving object. 

The system continuously updates the mean and variance of the Gaussian distributions to adapt to slow 

changes in the environment. 

Dynamic adaptation of GMM 

GMM adapts over time, meaning it continuously learns the scene. For example, if lighting changes gradually 

or objects like a parked car remain in the scene for an extended period, the GMM adjusts its Gaussian 

parameters to accommodate this [16]. This dynamic updating helps the system stay robust, distinguishing 

between transient changes (like passing shadows) and real moving objects (like cars or people). 

The process starts by breaking down video sequences into individual frames. Using GMM, the system models 

the background, capturing any variations in background intensity, such as lighting changes or slight 

movements like tree branches swaying. This allows the model to distinguish between background and 

foreground (moving objects). If pixel values deviate significantly from the background, the GMM flags these 

pixels as belonging to a moving object. By doing so, GMM effectively isolates moving objects while ignoring 

minor variations in the background. 
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5.4|Multiple Object Detection 

Once the preprocessing using GMM has been completed, the system transitions to the stage of multiple 

object detection, where it identifies and distinguishes between various objects detected in the foreground. 

GMM has already separated the background from the moving objects in the video frames, leaving the system 

with foreground regions that may contain one or more moving entities. The goal of this stage is to analyze 

these regions and accurately detect and label multiple objects in the scene. 

Identifying foreground objects 

After GMM has isolated the moving parts of the scene (foreground), it provides information about the pixels 

that do not fit the background model. These pixels likely represent moving objects, which could be anything 

from pedestrians to vehicles or animals [17]. These moving objects now need to be detected and categorized. 

One common method for identifying objects within these foreground regions is to detect blobs or contours 

in the segmented image. A blob represents a connected region of pixels that are identified as foreground. 

These blobs are then treated as potential objects that the system will further analyze. 

Feature extraction for object detection 

 To distinguish between different types of objects (such as people, cars, or bicycles), the system relies on 

various visual features extracted from the foreground regions in Fig. 2: 

I. Shape and size: objects are often differentiated based on their shape. For example, a car will have a rectangular 

shape, while a person will have a more elongated form. The system uses contour detection algorithms to 

extract the shape of the object and classify it accordingly. 

II. Movement patterns: objects also differ in how they move. For instance, pedestrians move with a certain gait, 

while vehicles have more linear and predictable motion patterns. By analyzing the trajectory and velocity of 

these objects over several frames, the system can differentiate between moving objects. 

III. Texture and color: in some cases, the texture or color of the objects may help in distinguishing between 

them, especially in more advanced detection systems that integrate deep learning methods to improve 

classification accuracy. 

Distinguishing between multiple objects 

Once features have been extracted, the system employs object detection algorithms to identify and 

differentiate between the various objects in the scene [18].  

a.                          b.                          c.                                           d. 

Fig. 2. Feature extraction for object detection; a. indoor data, b. extraction from indoor 

data, c. outdoor data, d. extraction from outdoor data. 

 

Each detected object is assigned a unique label, identifying what type of object it is (e.g., pedestrian, car, 

cyclist). This label is usually based on the features extracted during the detection phase, such as shape, size, 

and motion. One challenge in multiple object detection is handling overlapping objects. When two objects 

come close together in a scene, they may appear as a single blob of pixels [19]. The system employs techniques 

such as bounding boxes and non-maximal suppression to ensure that these objects are correctly separated 

and labeled as distinct entities. 



 Rasoulpour and Milovancevic | Comput. Eng. Technol. Innov. 1(1) (2024) 11-24 

 

17

 

  
Simultaneous detection of multiple objects 

The system is designed to detect multiple objects simultaneously within each frame. This means that in a 

single video frame, several objects (like a group of people or multiple cars) can be detected and processed at 

once. The detection algorithm ensures that all objects in the foreground are considered and assigned proper 

labels. 

The system must handle the detection of multiple objects under varying conditions, such as changes in 

lighting, partial occlusion (where objects overlap or are partially hidden), and varying speeds of movement. 

This requires robust detection algorithms that can generalize across different scenarios. 

After preprocessing the video using GMM, the system identifies and separates moving objects in the 

foreground. It extracts various visual features such as shape, size, movement patterns, and textures to 

distinguish between different objects in the scene. Multiple objects, including pedestrians, vehicles, or other 

entities, are detected and labeled in real time. Advanced object detection algorithms ensure that overlapping 

objects are handled properly, allowing the system to simultaneously detect and track multiple objects in each 

frame, making it ideal for applications such as surveillance, traffic monitoring, and autonomous driving. 

5.5|Tracking Multiple Objects Using Improvised CNNs 

In the multiple object tracking phase, an improvised CNNs is employed to track detected objects across 

frames in a video sequence [20]. CNNs are powerful in extracting and learning meaningful patterns from 

visual data, which makes them highly suitable for tracking objects, even in complex environments. Here's a 

step-by-step explanation of how tracking is performed using CNNs. 

Extracting visual features using CNNs 

At the core of the CNNs, the first few layers are responsible for extracting basic visual features such as edges, 

corners, and endpoints from the input video frames. These basic features are crucial in identifying the 

contours and outlines of the detected objects. CNNs uses convolutional filters (also known as kernels) to 

scan the video frames and detect these low-level features. 

CNNs layers are organized hierarchically. As the data moves through deeper layers of the network, more 

complex and abstract features are learned. For example, while the first layers may detect edges, deeper layers 

will learn more specific patterns, like the shape of a pedestrian or the structure of a vehicle. This hierarchical 

feature extraction allows CNNs to recognize objects more precisely and robustly. 

Layer connectivity and feature learning 

Convolution and Pooling: CNNs consists of multiple computation planes or layers, where each layer is 

connected to a local neighborhood in the previous layer [21]. The convolutional layers apply filters to the 

input data, generating feature maps that highlight different aspects of the detected objects.  

Following the convolution layers, the pooling layers (often max pooling) are used to down-sample the data. 

This reduces the spatial resolution of the feature maps, meaning that the size of the data becomes smaller. 

Pooling layers help by focusing on the most prominent features and reducing the computational complexity, 

making the system faster while still preserving key information about the objects. 

Feature distortion and data sub-sampling 

As the data moves through the CNNs, sub-sampling helps in reducing the amount of information passed to 

the subsequent layers. This is important for tracking because it reduces the amount of redundant data while 

retaining critical features needed to identify and track objects. For example, if two pedestrians are moving 

close to each other, sub-sampling helps in differentiating between the two by focusing on unique features. 
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Fig. 3. Max subsampling. 

Feature distortions are introduced at this stage, which allows the system to handle objects that undergo 

changes in size, shape, or appearance as they move across frames. This is especially useful in tracking because 

objects often appear distorted due to changes in perspective or motion blur, but CNNs can adapt and still 

track them accurately. 

Tracking across frames 

Tracking with temporal consistency: CNNs-based tracking systems analyze the object's position and 

appearance in one frame and use that information to predict where the object will be in the next frame [22]. 

The network uses the extracted features and compares them with subsequent frames to ensure that the same 

object is being followed over time. This allows the CNNs to track objects as they move across the scene, even 

if they momentarily disappear due to occlusion (e.g. when a pedestrian walks behind a car). 

Handling multiple objects: with CNNs, multiple objects can be tracked simultaneously by learning the unique 

feature patterns of each object. The CNNs tracks different objects (e.g., people, vehicles) by creating distinct 

feature maps for each detected object, ensuring that even if multiple objects are present in the same frame, 

they are individually tracked without confusion. 

The improvised CNNs in object tracking works by extracting key visual features such as edges, corners, and 

endpoints from the video frames [5]. These features are passed through a series of convolutional and pooling 

layers, where more meaningful and complex features are learned, enabling the system to detect and track 

objects even in cluttered scenes. The data is sub-sampled to reduce computational complexity, and distortions 

in the features help the system handle changes in object size, appearance, or position. The CNNs is highly 

effective in tracking multiple objects simultaneously, ensuring each object is followed consistently across 

frames by leveraging its unique feature set. 

6|Discussion 

The proposed multi-object detection system was implemented and tested using real-time video sequences to 

evaluate its performance under various conditions, such as low-light environments and crowded scenes. The 

system employed a combination of the GMM for background subtraction and CNNs for enhanced object 

detection and tracking. Below, we present the results obtained at each stage of the system and discuss the 

significance of these findings. 

Gray frame: simplifying for intensity-based motion detection 

In the first stage, video frames were converted from RGB to grayscale to reduce the complexity of the data, 

as grayscale frames represent each pixel by a single intensity value rather than three color components. This 

step facilitated simpler and faster computation of intensity differences between frames, which is essential for 

motion detection. While the grayscale conversion led to a slight loss in detail, the system effectively retained 

enough contrast to highlight moving objects, especially in real-time surveillance scenarios. The conversion to 

grayscale made it easier to focus on changes in brightness, which significantly reduced the noise from color 

variations, thereby improving the detection accuracy. 
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Fig. 4. Grayscale frame. 

 

Difference frame: detecting pixel-wise intensity changes 

The Difference Frame was generated by subtracting the current grayscale frame from the background model. 

This process highlighted the pixel-wise intensity changes, which typically correspond to motion. Any 

significant deviation in intensity values between two consecutive frames was flagged as potential motion. This 

stage allowed for the detection of objects moving through the scene. In cases of slow or subtle motion, the 

system was able to capture these changes due to the robustness of the GMM, which models each pixel with 

multiple Gaussian distributions to account for lighting fluctuations or small environmental shifts. However, 

at this stage, noise, such as moving shadows or reflections, could still cause false detections. 

Fig. 5. Difference frame. 

 

Threshold frame: binary classification of motion and noise 

To refine the detections, a thresholding operation was applied to the difference frame. If the intensity 

difference between two corresponding pixels exceeded the set threshold value (e.g., 30), the pixel was 

classified as part of a moving object and displayed as white. Pixels with lower differences were displayed as 

black, representing no motion. This binary thresholding significantly reduced noise by eliminating minor 

lighting changes and irrelevant movements (like swaying branches), improving the precision of motion 

detection. Fine-tuning the threshold value ensured a balance between detecting subtle movements 

(minimizing False Negatives, FN) and avoiding over-detection of noise (minimizing False Positives, FP). 

Adjusting this threshold was crucial for maximizing detection efficiency, particularly in challenging 

environments such as crowded or low-light scenarios. 
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Fig. 6. Threshold frame. 

 

Color frame: visualizing motion with object tracking 

The final output stage produced the color frame, where detected motion was highlighted using a green outline 

superimposed on the original RGB frame. This visual representation made it easy to track moving objects, as 

the green contours clearly indicated areas of motion against the background. The inclusion of color 

information allowed for better object distinction, particularly in scenes with multiple moving objects. The 

CNNs was then applied to track the detected objects across consecutive frames, ensuring accurate and 

consistent tracking, even when objects momentarily disappeared or overlapped. 

Fig. 7. Color frame. 

 

By using CNNs for multi-object detection, the system was able to extract visual features such as edges, shapes, 

and motion patterns from the detected regions. This step enhanced object tracking accuracy by recognizing 

the unique characteristics of different objects (e.g., pedestrians, vehicles), allowing for robust performance 

even in cluttered environments. The CNNs also helped distinguish between multiple objects in real time, 

ensuring that each moving entity was correctly identified and tracked. 

Performance evaluation 

To evaluate the system's performance, we used standard performance metrics derived from a confusion 

matrix that measured the accuracy of object detection and tracking is mentioned in Table 1. 

Table 1. Confusion matrix. 

 

 

 Actual Motion (Positive) No Actual Motion (Negative) 

Predicted motion True Positive (TP) = 85 False Positive (FP) = 20 

Predicted no motion False Negative (FN) = 15 True Negative (TN) = 80 
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The system's performance is evaluated in Fig. 8 using standard performance metrics calculated from the 

confusion matrix, which tracks True Positives (TP), False Positives (FP), True Negatives (TN), and False 

Negatives (FN). Based on the detection and tracking results: 

Accuracy: measures the overall correctness of the system in Eq. (1). 

Precision: measures how many detected motion events are true in Eq. (2). 

Recall (sensitivity): Eq. (3) measures how well the system detects actual motion. 

F1-Score: Eq. (4) provides a balance between precision and recall. 

These metrics help evaluate the system's effectiveness, providing insights into the balance between motion 

detection sensitivity and the number of false alarms in Table 2. 

 

Table 2. Proposed method performance metrics. 

 

 

 

 

 

 

 

 

Accuracy =
Tp + Tn

(Tp + Tn + Fp + Fn)
. (1) 

Precision =
Tp

Tp + Fp
. (2) 

Recall =
Tp

Tp+Fn
. (3) 

F1 − Score =
2×Precision×Recall

Precision+Recall
. (4) 

Metrics Proposed CNN 

Accuracy 82.5% 

Precision 80.95% 

Recall 85% 

F1-Score 82.88% 

0

20

40

60

80

100

Predicted Motion Predicted No Motion

V
al

u
e 

(%
)

Metrics

Actual Motion(Positive) No Actual Motion(Negative)

Fig. 8. Performance matrix. 
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Fig . 9. Proposed model metrics evaluation. 
 

Illustrated the Fig. 9, the proposed CNNs demonstrates strong performance, with accuracy at 82.5%, 

reflecting overall correctness. Precision is slightly lower at 80.95%, indicating good identification of TPs but 

some FPs. The recall is the highest at 85%, showing the model's ability to capture the most actual positive 

cases. The F1-Score, at 82.88%, balances precision and recall, confirming solid performance across metrics. 

Overall, the model is effective but could benefit from further refinement to reduce FPs and improve 

precision. 

These metrics highlight the system's effectiveness, particularly in balancing between precision and recall. The 

system performed well in detecting true motion, with an accuracy of 82.5% and an F1-Score of 82.88%, 

showing robustness in reducing FPs while ensuring high detection sensitivity. The CNN's contribution to 

tracking helped ensure consistent multi-object tracking, maintaining high recall even in challenging conditions. 

7|Conclusion 

In conclusion, this paper presented an advanced framework for real-time multi-object detection and tracking 

using CNNs combined with GMM. By breaking down video sequences into frames, modeling the 

background, and utilizing CNNs for object tracking, the system effectively distinguishes between moving 

objects and background noise, even in challenging conditions such as low-light environments. The proposed 

system demonstrated strong performance with an accuracy of 82.5%, precision of 80.95%, recall of 85%, and 

an F1-score of 82.88%. These results showcase its potential for practical applications in areas such as video 

surveillance, traffic monitoring, and security systems, while further enhancements could focus on reducing 

FPs and improving precision for even more reliable object tracking. 
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